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Abstract

Since 2010, we have built and maintained LensKit, an open-source toolkit for building,
researching, and learning about recommender systems. We have successfully used the soft-
ware in a wide range of recommender systems experiments, to support education in tradi-
tional classroom and online settings, and as the algorithmic backend for user-facing recom-
mendation services in movies and books. This experience, along with community feedback,
has surfaced a number of challenges with LensKit’s design and environmental choices. In
response to these challenges, we are developing a new set of tools that leverage the PyData
stack to enable the kinds of research experiments and educational experiences that we have
been able to deliver with LensKit, along with new experimental structures that the existing
code makes difficult. The result is a set of research tools that should significantly increase
research velocity and provide much smoother integration with other software such as Keras
while maintaining the same level of reproducibility as a LensKit experiment. In this paper, we
reflect on the LensKit project, particularly on our experience using it for offline evaluation ex-
periments, and describe the next-generation LKPY tools for enabling new offline evaluations
and experiments with flexible, open-ended designs and well-tested evaluation primitives.

1 Introduction

LensKit [Ekstrand et al.,|2011] is an open-source toolkit that provides a variety of features in sup-
port of research, education, and deployment of recommender systems. It provides tools and in-
frastructure support for managing data and algorithm configurations, implementations of sev-
eral collaborative filtering algorithms, and an evaluation suite for conducting offline experiments.

Based on our experience researching and teaching with LensKit, and the experience reports
we hear directly and indirectly from others, we have come to believe that LensKit’s current de-
sign and technology choices are not a good match for the current and future needs of the recom-
mender systems research community. Further, in our examination of the software landscape to
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determine what existing tools might support the kinds of offline evaluation experiments we have
been running with LensKit and plan to run in coming years, we came to the conclusion that there
is a need for high-quality, well-tested support code for recommender systems experiments in the
PyData environment.

To meet that need, we have developed LKPY, a “spiritual successor” to LensKit written in
Python. This project brings the LensKit’s focus on reproducible research supported by well-tested
code to a more widely-used and easier-to-learn computational environment.

In this paper, we reflect on some of the successes and failures of the LensKit project and
present the goals and design of the LKPY software. We invite the community to provide feed-
back on how this software does or does not meet their needs.

2 LensKitin Use

In its 8 years of development, we and others have successfully used LensKit across all its intended
application contexts.

2.1 Research

LensKit has supported a good number of research projects spanning a range of research questions
and methodologies; a complete list of known published papers, theses, and dissertations using
LensKit is available from the project web sitef}

We have used LensKit ourselves both for offline evaluations exploring various aspects of al-
gorithm and user behavior [Ekstrand and Riedl, 2012, |[Ekstrand et al., [2018a Kluver et al., 2012]
and studying the evaluation process itself [Ekstrand and Mahant, 2017]. It has also been used
to study specialized recommendation problems, including cold start [Kluver et al., 2014] and re-
versible machine learning [Cao and Yang, 2015]. Its algorithms have been used to recommend
books [Pera and Ng, |2017], tourist destinations [Pessemier et al., [2016], videos [Solvang, [2017],
and a number of other item types.

One of LensKit’s primary objectives is to promote reproducible, reliable research. To that end
we have been modestly successful; in our own work, it has enabled us to publish complete re-
producer code for recent papers [Ekstrand and Mahant, |2017, Ekstrand et al.,[2018a]], and most
recently to provide reproducer code during the review process [Ekstrand et al.,[2018b].

2.2 Education

We have used LensKit to support recommender systems education in multiple settings. At the
University of Minnesota, Boise State University, and Texas State University, we and our collabo-
rators have used it as the basis for assignments in graduate classes on recommender systems. It
also forms the basis for the assignments in the Recommender Systems MOOC [Konstan et al.,[2015].

Response to the software in this setting has been mixed. Its standardized APIs and integration
with the Java ecosystem have made things such as automated grading in the MOOC environment
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relatively easy to implement, but students have complained about needing to work in Java and
about the system’s complexity.

2.3 Production

LensKit powers the MovieLens movie recommender system [Harper and Konstan,2015], the Book-
Lens book recommender [Kluver et al.| 2014], and the Confer conference session recommender
[Zhang et al.;2016]. This work, particularly in MovieLens, has enabled new user-centered research
on recommender system capabilities and user response.

3 Reflections on LensKit

Our direct experience using LensKit in this range of applications, and what we hear from other
users and prospective users, has given us a somewhat different perspective on the software than
we had when we developed the early versions of LensKit. We think some of our decisions and
goals hit the mark and we were successful in achieving them; some other design decisions have
not held up well in the light of experience.

3.1 What We Got Right

There are several things that we think we did well in the original LensKit software; some of these
we carry forward into LKPY, while others were good ideas in LensKit’s contexts but are not as
important today.

Testing

In the LensKit development process, we have a strong focus on code testing [Ekstrand, 2016].
This has served us well, and helped ensure the reliability of the LensKit code. It is by no means
perfect, and there have been bugs that slipped through, but the effort we spent on testing was a
wise investment.

The Java Platform

When we began work on LensKit, there were three possible platforms we seriously considered:
Java, Python, and C++. At that time, the Python data science ecosystem was not what it is to-
day; NumPy and SciPy existed, but Pandas did not. Pure Python does not have the performance
needed for efficient recommender experiments. Java enabled us to achieve strong computational
performance in a widely-taught programming language with well-established standard practices,
making it significantly easier for new users (particularly students) to adapt and contribute to it
than we likely would have seen with a corresponding C++ code base.



Modular Algorithms

LensKit was built around the idea of modular algorithms where individual components can be
replaced and reconfigured. In the item-item collaborative filter, for example, users can change the
similarity function, the neighborhood weighting function, input rating vector normalizations,
item neighborhood normalizations, and the strategy for mapping input data to rating vectors.
This configurability has been useful for exploring a range of configuration options for algorithms,
at the expense of larger hyperparameter search spaces.

3.2 What Doesn’t Work

Other aspects of LensKit’s design and development do not seem to have met our needs or those
of the community as well.

Opinionated Evaluation

While LensKit’s algorithms were highly configurable, its offline evaluation tools are much more
opinionated. You can specify a few types of data splitting strategies, and recommendation can-
didate strategies, and it has a range of evaluation metrics, but the overall evaluation process and
methods for aggregating metric results are fixed. Metrics are also limited in their interface.

As we expanded our research into the recommender evaluation process itself, we repeatedly
ran in to limits of this evaluation strategy and had to write new evaluation code in a fairly heavy
framework, or just have the evaluator dump intermediate files that we would reprocess in R or
Python, in order to carry out our research. Too often the answer we would have to give to questions
on the mailing list or StackOverflow is “we’re sorry, LensKit can’t do that yet”.

One of our goals was to make it difficult to do an evaluation wrong: we wanted the defaults
to embody best practices for offline evaluation. However, best practices have been sufficiently
unknown and fast-moving that we now believe this approach has held our research back more
than it has helped the field. It is particularly apparent that a different approach is necessary to
support next-generation offline evaluation strategies, such as counterfactual evaluation [Bottou
et al.,[2013], and carry out the evaluation research needed to advance our understanding of effec-
tive, robust, and externally valid offline evaluations.

Indirect Configuration

LensKit is built on the dependency injection principle, using a dependency injection container
[Ekstrand and Ludwig, 2016] to instantiate and connect recommender components. This method
gave us quite a few useful capabilities, such as the automatically detecting components that could
be shared between multiple experiment runs in a parameter tuning experiment, but resulted in a
system where it is difficult to configure an algorithm, and difficult to understand an algorithm’s
configuration. It was also difficult to document how to use the system.

We believe this largely stems from the role of inversion of control in working with LensKit
code — users never write code that assembles a LensKit algorithm, they simply ask LensKit to
instantiate one and LensKit calls their custom components.



Implicit Features

Beyond indirect configuration, LensKit has a lot of implicit behavior in its algorithms and evalu-
ator. This has at least two downsides: first, it is less clear from reading a configuration precisely
what LensKit will do, making it more difficult to review code and experiment scripts; second,
if documentation slipped behind the code, understanding the behavior of LensKit experiment
scripts required reading the LensKit source code itself.

Living in an Island

LensKit has its own data structures and data access paradigms. Part of this is due to lack of stan-
dardized, high-quality scientific data tooling that is not connected to a larger framework such as
Spark (while Spark does seem to expose data structures as a separate library, documentation is
nonexistent).

This makes it difficult, however, to make LensKit interoperate with other software and data
sets. While LensKit is flexible in the data it accepts, users must write data adapters. Using other
tools such as Spark is difficult. It’s unclear what, given the Java commitment, we could have done
differently here, but it is definitely a liability for the future of recommender systems research.

4 Toolkit Desiderata

To address these weaknesses and power the next generation of recommender systems research,
both in our own research group and elsewhere, there are several things that we desire from our
recommender systems research software:

Build on Standard Tools There are now standard tools, such as Pandas and the surrounding Py-
Data ecosystem [McKinney, 2018], that are widely adopted for data science and machine
learning research. Building on these packages maximizes interoperability with other soft-
ware packages and enables code reuse across different types of research. We also find
Jupyter notebooks to be a valuable means of promoting reproducibility, and would like
an experiment workflow where the final analysis consists of loading the recommender re-
sults into a Jupyter notebook and computing desired metrics over them. Small experiments
could even be driven entirely from Jupyter.

Leverage Existing Software Modern recommender systems are usually machine learning sys-
tems; a recommender research toolkit should not try to reinvent that wheel. Scikit-Learn
provides many machine learning algorithms suitable for recommender systems research,
and Keras, PyTorch, and TensorFlow all provide neural network functionality to Python.
Recommender research tooling should work seamlessly with algorithms implemented in
these kinds of toolkits.

Expose the Data Pipeline LensKit hides the data pipeline: it controls data splitting, algorithm
training, recommendation, and evaluation. Outputs of each stage can be examined, but not
manipulated, and the pipeline itself cannot be easily changed. Putting the user in control of
the pipeline, and providing functions to implement standard versions of each of its stages,



will have two benefits: the actual pipeline used is clearly documented in the experiment
code, and the pipeline can be modified as research needs demand.

Explicit is Better than Implicit Related to exposing the data pipeline, we wish for our new tools
to follow the Python philosophy of favoring explicit denotations of desired operation. This
will make it easier to review experiment designs and improve the reliability and rigor of
reproducible research.

We hope that this will also make the LKPY code itself easier to read and understand.

Simple Interfaces Interfaces toindividual software components should be as simple as possible,
so that it is easy to document, test, and reimplement them.

Easy-to-Use Development Environment In order for prospective users and contributors, partic-
ularly students, to use LKPY and participate in its development, we want the development
tools to be as standard and easy-to-use as possible.

Notably absent from this list is LensKit’s (in)famous algorithm configurability. That config-
urability was useful for exploring the space of algorithm configurations, but its particular design
is more suitable to heuristic techniques such as k-NN; machine learning approaches seem better
served by a different design. Connecting with existing flexible optimization software will pro-
vide a great deal of configurability for new algorithms. We think it is more important for the
recommender-specific software to focus on flexibility in the experiment design.

5 The LKPY Software Package

To that end, we have developed a successor to LensKit, LKPY. LKPY is a new Python package for
recommender systems experiments, particularly offline evaluations and similar studies, that we
hope will also be useful in educational settings. LKPY is capable of running many of the kinds
of experiments we have run with LensKit in a more flexible and forward-looking fashion. It is
published under the MIT license.

5.1 LKPY Facilities

LKPY provides several modules for aiding recommender experiments:

Data Preparation The crossfold module provides functions to split data for cross-validation. It
supports rating-based, user-based, and item-based splitting strategies, with configurable
data holdout settings.

Algorithm APIs The algorithms module defines Python interfaces for training models, gener-
ating predictions, and generating recommendations. These interfaces are minimal, de-
fined in terms of Pandas data structures, and can be readily implemented on top of any de-
sired machine learning toolkit such as Scikit-Learn or Pandas. The algorithm API is based
on the patterns used by Scikit-Learn [Buitinck et al., 2013, where a fit method estimates
model parameters (trains the model) in-place. This makes the API familiar to users with
experience using other packages in the SciKit ecosystem.



Evaluation Metrics The metrics package provides classical top-N and prediction accuracy met-
rics. Metrics are functions that operate directly over Pandas series objects, and thus can be
applied to any data of an appropriate shape. There is therefore no limit to how the user re-
processes recommendations and predictions before computing metrics. The topn package
also provides a RecListAnalysis class to facilitate evaluation of top-/NV recommendation
lists, merging test data with recommendations and accounting for unrecommended items.

Classical CF Algorithms LKPY providesimplementations of nonpersonalized, k-NN, and several
matrix factorization collaborative filters. We expect to expand the set of algorithms pro-
vided, but being a source of algorithms is not LKPY’s primary objective. These algorithms
are provided in part to give LensKit users a migration path to LKPY that keeps the algo-
rithms as consistent as possible; LKPY’s algorithm implementations are based on LensKit’s
and should generally be the same. They are less configurable, however, selecting config-
uration options such as item-item similarity functions that we have found to work well
across a range of data sets. We use Numba to accelerate inner algorithm computations
when NumPy, SciPy, or Pandas operations are inadequate.

API Bridges LKPY provides implementations of its algorithm APIs using Implicit?| (Implicit ALS
and BPR with GPU acceleration) and HPFRE (providing Hierarchical Poisson Factoriza-
tion [Gopalan et al.,[2013]).

Batch Utilities To ease writing evaluation scripts, LKPY provides utility functions for computing
predictions or recommendations for many users in batch, and for evaluating multiple al-
gorithms on multiple data sets. These batch routines are capable of running directly, but
can also save experiment descriptions to disk to enable large experiments to be parallelized
through external systems such as SLURM’s job arrays.

Since components connect with standard Pandas data structures, they can be used together or
individually. Itis trivial to use alternative algorithms with LKPY’s data splitting and metrics, or to
use an entirely different data preparation strategy with LensKit’s algorithms and batch functions.

One way in which our desire to favor explicit code over implicit behavior manifests is in data
processing: instead of telling LensKit how to transform data, in LKPY, the user just directly writes
their data transformations using standard Pandas operations.

5.2 LKPY Example Code

Figure [ shows an example of using LKPY to compute the nDCG of a k-NN algorithm with
5-fold cross-validation on the MovieLens 100K data set. It is somewhat verbose, but ever step of
the evaluation process is clear in the code, so the experiment structure can be checked and it is
self-documenting when the evaluation code is published.

Zhttps://github.com/benfred/implicit
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import pandas as pd

from lenskit import batch, topn, datasets, util
from lenskit import crossfold as xf

from lenskit.algorithms import knn, Recommender

ml = datasets.ML100K('m1-100k"')
ratings = ml.ratings

algo = knn.ItemItem(30)

def eval(train, test):
# ensure the recommender is a top-N recommender
rec = Recommender.adapt(algo)
# cloning the model ensures forward compatibility
# with things like parallelism
rec = util.clone(rec)
rec.fit(train)
users = test.user.unique()
recs = batch.recommend(algo, model, users, 100)
return recs

# compute evaluation
splits = list(xf.partition_users(ratings, 5, xf.SampleFrac(0.2))
recs = pd.concat((eval(p.train, p.test)

for p in splits),

ignore_index=True)

# integrate test data; since splits are disjoint users
# for a single data set, this 1s sufficient

all_test = pd.concat(p.test for p in splits)

# compute metric results

rla = topn.RecListAnalysis()

rla.add_metric(topn.ndcg)

metrics = rla.compute(recs, all_test)

Figure 1: Example Simple Evaluation

5.3 Dependencies and Environment

LKPY leverages Pandas [McKinney and Others| 2010], numpy [Oliphant, [2006], scipy
2007], and PyTables/HDFS5, along with several other Python modules. We use Numba
2015] for native-code acceleration, as it enables efficient, parallelized NumPy-based code without
complex build toolchains; JobLib provides parallelism for higher-level batch operations and other
settings where Numba parallelism is not effective.




We regularly test LKPY with recent Python versions on Windows, Linux, and macOS. Our on-
going criteria are to support the three major operating systems, and the version of Python 3 avail-
able in the most most recent release of major Linux distributions (Ubuntu LTS, RHEL/CentOS
with EPEL, and Debian). We focus primarily on Anaconda-based Python installations, but also
test the code with vanilla Python on all supported platforms. We provide binaries via Anaconda
Cloud for supported Python versions and operating systems} along with source distributions on

the Python Package Indexf|

5.4 Future Directions

LKPY provides a clean, minimal core that can be extended however our needs and those of the
research community require. We are welcome to contributions of additional capabilities, algo-
rithms, and shims to external packages, either as pull requests to the main LKPY project or as
add-on packages distributed separately.

6 Comparison to Existing Packages

Before embarking on this project, we re-examined the landscape of existing software to deter-
mine if the needs we saw would be met by one of the other software packages. We were unable to
find existing tooling that supports our goals of flexible recommender systems experiments that
leverage the PyData ecosystem.

Two of the most obvious contenders for current Python recommender systems are surprise
[Hug, 2017] and PyRecLab [Sepulveda and Parra, [2017]. While Surprise uses numpy and scipy,
neither of these packages leverage the PyData ecosystem; instead, each has its own classes for
representing data sets. PyRecLab’s evaluation facilities are also more automatic; we want to write
out the evaluation steps in our own code so that we can experiment with them more readily. Fur-
ther, we do not want to require students to learn C++ to be able to participate in research that
requires extending LKPY.

Our approach is perhaps most similar to that of mred? in that we focus on discrete steps en-
abled by separate tools. Again, though, mrec does not leverage contemporary Python data science
tools, and does not seem to be under active maintenance. We also focus on Python as the scripting
language for experiment control instead of mrec’s command-line orientation.

Itis our sense that many Python-based recommender systems research projects roll their own
evaluation procedure directly in Python tools while building the recommender in scikit-learn or
one of the deep learning frameworks. It is our goal to integrate with such workflows, enabling
them to leverage common, well-tested implementations of metrics and other experimental sup-
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port code while continuing to use their existing data flows for the recommendation process.

7 Conclusion

We have learned many lessons developing, maintaining, and researching with the LensKit soft-
ware. Based on these lessons, we came to the conclusion that, in its current form, it is not meeting
our needs or the needs of the recommender systems community well, and that resources would
be better spent on tools that improve research being done with the widely-used Python packages
that drive much of modern data science.

Where LensKit focused on providing building blocks for recommender algorithms, LKPY pro-
vides building blocks for recommender experiments. Built on the PyData stack and oragnized
around clear, explicit data processing pipelines with a minimum of custom concepts, LKPY pro-
vides a solid foundation for new experimentation and concepts at all stages of the offline rec-
ommender system evaluation lifecycle. We expect it to meet our own research needs in offline
evaluation and simulation of recommender systems much better than the current LensKit code
going forward, and hope that others in the research community find it useful as well. We welcome
contributions on GitHub, and invite feedback from the community to guide future development.
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